
An Economist's View of Biological Age

Lauren L. Schmitz, PhD

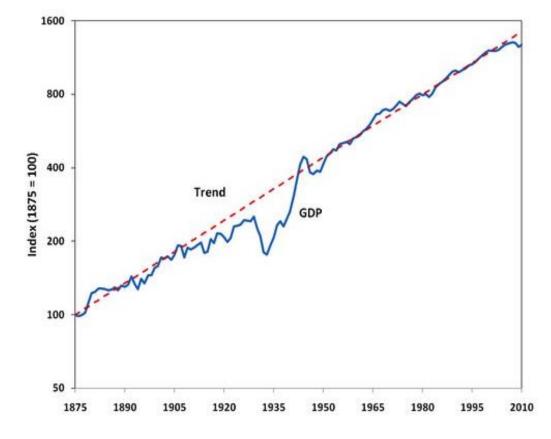
Assistant Professor La Follette School of Public Affairs University of Wisconsin-Madison <u>Ilschmitz@wisc.edu</u>

RCCN Workshop: Measuring Biological Age | 1-20-22

This research was performed pursuant to a grant from the National Institute on Aging (**K99/R00 AG056599**). Findings and conclusions are solely those of the authors and do not represent the views of the NIA.

Why invite an economist to the party?

- Specialize in using quasi-experimental techniques to isolate causality in populationlevel data
 - Tools: instrumental variables, differences-in-differences, regression discontinuity designs, etc.
- Useful given increasing availability of biomarker/molecular data in large population aging studies (e.g., HRS)
- Expands the range of policy-relevant questions we can ask regarding social determinants of molecular aging


Example: Early-life shocks and late life epigenetic aging

- Challenging to study the causal effect of early-life shocks on epigenetic modifications in humans
- Lack of epidemiological studies with epigenetic and socioeconomic measures across the life course
 - Some exceptions: Dutch Hunger Winter (Heijmans et al., 2008) and Project Ice Storm studies (Cao-Lei et al., 2014)

Research question

- Does exposure to economic fluctuations in utero impact late-life epigenetic aging?
 - Focus on the most severe and prolonged economic downturn in American history → the Great Depression

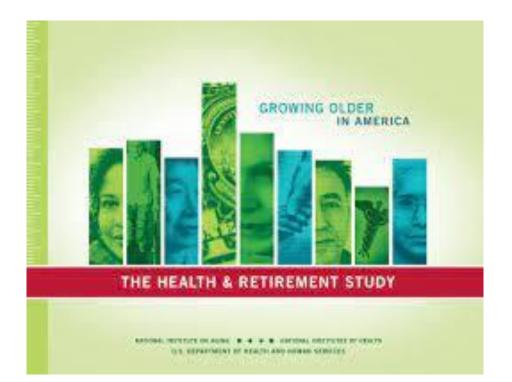
Real GDP per working-age person in the U.S., 1875-2010

Sources: Kehoe and Prescott (2007) and Timothy Kehoe's website: <u>http://users.econ.umn.edu/~tkehoe/</u>

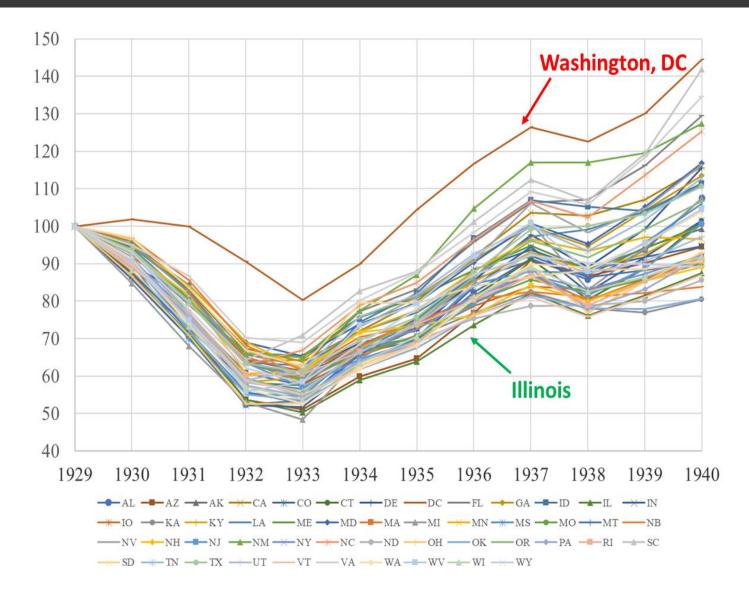
Why focus on the Great Depression?

1. Massive economic shock

- A quarter of the U.S. labor force was unemployed, fortunes were destroyed, no social safety net
- Huge unexpected financial and psychological shock for many households (Elder Jr. 1974; Terkel 1970, 2010)



- 2. Dramatic geographic and temporal variation in economic conditions in the 1930s due to the GD and the subsequent government relief programs from the New Deal
 - Exploit state- and year-level variation in macroeconomic conditions during the 1930s to identify the impact of the GD on epigenetic age acceleration
- 3. We can use the Health and Retirement Study (HRS)!
 - 1st nationally representative study in the U.S. to collect epigenetic data that has necessary state-level geographic variation (N=4,018)


HRS sample and data

- HRS respondents born between 1929-1940
- Had their blood drawn in 2016 (~75-86)
- Link state-level data on wages to individuals' state of birth from in utero period to age 16
- Use 6 publicly-available epigenetic aging clocks/pace of aging measures

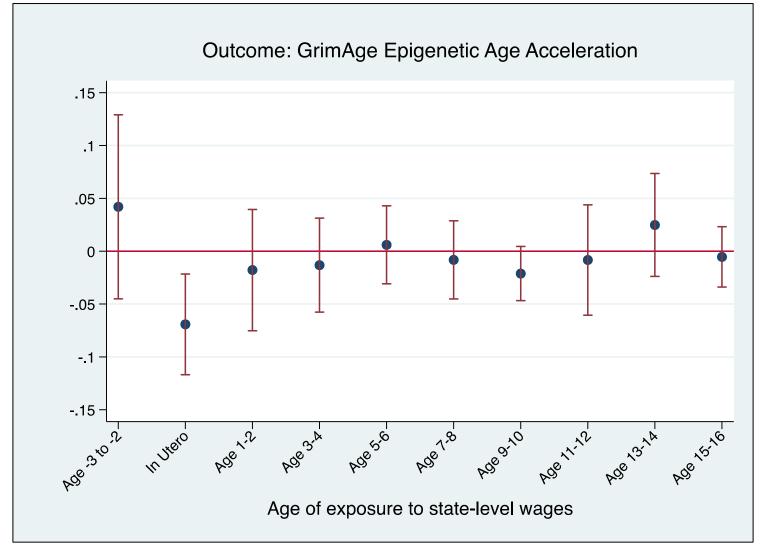
Wage index by state (1929=100)

Data source: Bureau of Economic Analysis

Difference-in-differences specification

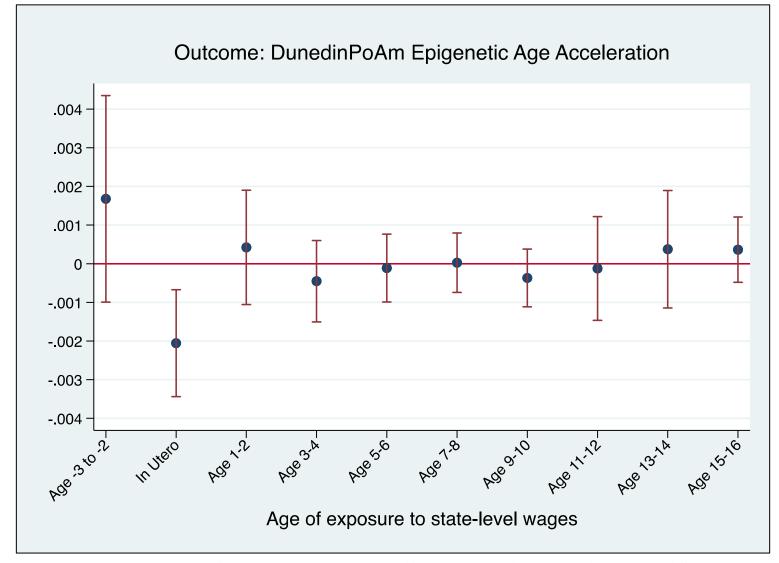
 $EAA_{isrc} = \beta_0 + \sum_{t=-3}^{T} \beta_t Wages_{sc} + X'_i \beta + Z_{s\,1930} * c + \theta_s + \eta_c + u_{(s1930 \times c)} + \gamma_r * c + \varepsilon_{isrc}$

- *EAA*_{isrc}: epigenetic age acceleration measure for individual *i* born in state *s* in region *r* in year *c* in 2016
- *Wages:* aggregate wage index at the state and year level for the period before conception (pre-trend), in utero, and in early childhood (*t*=-3 to 16)
- X: sex, race, and maternal education
- Z_{s1930}*c: vector of state-level characteristics around 1930 including maternal and infant mortality rate and the state population interacted with YOB time trends
- $u(_{s1930\times c})$: state's share of wage earners in manufacturing in 1930 interacted with YOB FE's
- θ_s and η_c : state and year of birth fixed effects
- $\gamma_r * c$: region of birth*YOB time trends
- ϵ_{isrc} : random error term clustered at the state of birth and individual level
- All models are estimated using the HRS sample weights for the VBS sample


Baseline model: State-level wages in utero on EAA

OUTCOME	Horvath EAA	Horvath 2 EAA	Hannum EAA	Levine EAA	GrimAge EAA	DunedinPoAm EAA
Wage index in utero	0.0523 [0.0462]	-0.0157 [0.0387]	-0.0299 [0.0452]	-0.0055 [0.0446]	-0.0762*** [0.0229]	-0.0017*** [0.0006]
Observations	832	832	832	832	832	832
R-squared	0.15	0.142	0.189	0.17	0.273	0.134
YOB FE	Х	Х	Х	Х	Х	Х
SOB FE	Х	Х	Х	Х	Х	Х
Individual Covariates	Х	Х	Х	Х	Х	Х
Mother's Education	Х	Х	Х	Х	Х	Х
Add'l state controls*linear trends	Х	Х	Х	Х	Х	Х
Share of Manufacturing*YOB FE	Х	Х	Х	Х	Х	Х
Region of birth*linear trends	Х	Х	Х	Х	Х	Х

Cluster robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1


A 1-SD increase in the wage index in utero led to 0.31 SD & 0.37 SD declines in GrimAge EAA and PoAm EAA
1-SD of the wage index is equivalent to ~80% of the overall decline in wages during the GD

State-level wages in childhood on GrimAge EAA

Cluster robust 95% confidence intervals. Coefficients are from the fully specified model.

State-level wages in childhood on PoAm EAA

Cluster robust 95% confidence intervals. Coefficients are from the fully specified model.

Study conclusions (preliminary)

- Economic fluctuations from the GD increased epigenetic age acceleration among individuals who survived until 2016
- Effects of the shock appear to be linked to exposures during the in utero period
- Effects do not appear to be explained by selective responses (mortality or fertility) and are not driven by Dust Bowl states, New Deal spending, or WWII

Gaps and Opportunities

- Need more longitudinal data AND causal research designs to assess whether biological aging processes are affected by the social environment
- Epigenetic aging measures are sensitive and have relatively large effect sizes
 - Effect sizes of quasi-natural experiments tend to be modest
 - Improved identification of treatment effects in smaller samples
 - Identify effects in older (surviving) samples
- Mechanistic insights \rightarrow WHY do in utero insults result in faster aging?

Thank you and acknowledgements

Co-author: Valentina Duque

Funding acknowledgements:

NIA K99/R00 AG056599 Center for Retirement Research: Sandell Grant (BC20-S2)