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Introduction

Trajectories are patterns of change over time

Variety of methods exist for modeling longitudinal data, many
of which are sometimes called “trajectory methods.”

But today: focus on methods for repeated measures of same
variable (vs. models for transitions or states)

Two general approaches: Growth Modeling methods (GM)
and Latent Class Methods (LC)

Highlight basic ideas and discuss similarities/differences

Dispell some myths about the methods
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Nomenclature

GMs and LCs go by a variety of names, some overlapping

GM: trajectory models, latent trajectory models, latent curve
models, multilevel growth models, random coefficient models,
parametric trajectory models, random effects growth models

LC: trajectory models, latent trajectory models, group based
trajectory methods, nonparametric trajectory modeling, finite
mixture models

Different names emerge from different statistical origins (e.g.,
“latent” from SEMs; “multilevel” from HLMs)

So...usually can’t tell what someone has done without looking
at methods section.

3 / 19



Data for Examples

Data are from the Health and Retirement Study (HRS)

Nationally representative panel study with replenishment of
∼35k persons from 1992-

BMI data on 1951 birth cohort collected in ‘04, ‘06, ‘08, ‘10.

Restrict to survivors with no missing data (n = 353)

BMI is kg/m2; normal<25; 25<overweight<30; 30<obese

Some examples treat BMI as continuous; some as
categorical/dichotomous
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GM Idea: Intercepts (I) and Slopes (S) for All Individuals
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Bivariate Distribution of I and S
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Black/White Differences in I and S
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Basic GC

Basic OLS model with longitudinal data:

Level 1: yit = b0i + b1i tit + b2xit + eit

Level 2: b0i = γ0 + γ1zi + ui

b1i = δ0 + δ1zi + vi
e ∼ N(0, σ2)

[u, v ] ∼ MVN(0, τ)

Reduced form (insert Level 2 into Level 1):

yit = (γ0 + γ1zi + ui ) + (δ0 + δ1zi + vi )tit + b2xit + eit

= b0 + b1zi + b2tit + b3zi tit + b4xit + (ui + vi tit + eit)

So, OLS will work but produce bad s.e.’s because of
heteroscedasticity and non-independence of errors
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Basic GC, continued

Can be estimated in hierarchical/random effects framework
with data in “long” format (via Stata “mixed” or HLM
software)

In that context, sometimes called a variance components
model because of the Level 1 and (Level 2) random effects
variances

...Or as a multivariate model in an SEM framework, with the
random effects as latent variables (hence “latent” growth)

Data in that framework is in “wide” format

Missing data handled implicitly in long format, but must be
handled via FIML or other means in wide format

9 / 19



GC Example

Unconditional Model (Random) Intercept (Random) Slope

Mean 29.16 .196
Variance 50.5 .40
Correlation (I,S) -.21

Conditional Model

Intercept 34.9* .13
Male .71 -.07
Black 2.24* .003
South -1.2 -.13
Education -.46* .01
RE Vars 48.1(R2 = .048) .397(R2 = .013)
Correlation (I,S) -.21
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Latent Class Modeling

GM (1) assumes parametric trajectory shape and estimates an
“average” one, (2) estimates (smooth) variance around it, and
(3) estimates covariate effects on trajectory components

LC (1) does not (necessarily) assume a parametric form for
trajectories, and (2) does not assume a smooth distribution of
intercepts/slopes, were trajectories parameterized

Instead: LC assumes population consists of multiplie discrete,
(relatively) homogenous “classes”

Goal is to identify how many distinct classes (using BIC) and
use covariates to predict membership in them
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Basic Idea of LC: Finite Mixture Distribution
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Basic Idea of LC, continued

Involves finite mixture modeling and can handle more than 1
measure/repeated measure:

f (yit) =
K∑

k=1

f (yit |ck)p(ck)

with
∑K

k=1 ck = 1. (proportion of population in each class)

f (yit |ck) can be specified to be parametric wrt time, or not.
And, the distribution can be anything. e.g.:

p(yit = 1|ck) ∼ Bernoulli(pkt)

or
f (yit |ck) ∼ N(µkt , σ

2
kt)
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Bernoulli Ex. (obese/not at each t; 24 = 16 “trajectories”)

Classes and Proportions in Each

Class p(obese1) p(o2) p(o3) p(o4) % in ck
“Stable nonO” .018 .009 .000 .037 57%
“Variable” .321 .605 .655 .642 13%
“Stable O” .990 .986 1.00 .982 30%

Individual Trajectories and Assigned Classes

n Sequence p(i ∈ c1) p(i ∈ c2) p(i ∈ c3) Assumed class

190 0000 .992 .008 .000 1
10 0001 .727 .273 .000 1
4 1000 .824 .176 .000 1

105 1111 .000 .036 .964 3
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Bernoulli Example, cont’d

n Sequence p(i ∈ c1) p(i ∈ c2) p(i ∈ c3) Assumed class

2 0010 0 1 0 2
7 0011 0 .997 .003 2
4 0100 .422 .578 0 2
3 0101 .016 .984 0 2
5 0110 0 .996 .004 2
9 0111 0 .883 .117 2
2 1001 .092 .908 0 2
4 1011 0 .625 .375 2
3 1100 .027 .973 0 2
1 1101 .001 .999 0 2
4 1110 0 .535 .465 2
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Normal Example: Suggests flat, linear trajectories
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Issues to Consider

Issue 1: Once classes are assigned, usually use multinomial
logit to predict membership...

...but there is clear uncertainty in class membership

...but classes aren’t necessarily “latent” (e.g., body weight
subpopulations are determined by sex—there’s nothing latent
there). So, should covariates be considered WHILE estimating
classes?

If one assumes parametric shape for trajectories, decision
between latent class and growth model is fundamentally
whether one believes distribution of intercepts and slopes is
smooth or “lumpy” (LCGA vs. GM)

Key LC assumption is that there is no heterogeneity within
classes (unrealistic)

Assumption can be relaxed, but it becomes dicey. (GMM)
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Growth? Latent Class? How Many Classes?

20 25 30 35 40 45

−
2

0
2

4

Baseline BMI

B
M

I G
ro

w
th

1

1
1 11

1
11

1
1

1

1

11

1

1 111

1
11

1
1

111

1
1

1

1 2

2

2

2

2

2
2

2

2

2

2

2

2 22

2

2
2

2

22
2

222
2

22
2
222

2

2

2

2
2

2

2

2

2
2

2
2

2

2

22

2

2

2 2
2 22

2

2
22

2
2

2

2
2

2

2

2

222
2

22 2

2

22

2

2

3 3

3

3
3 3

3
3 33

3

33 33

3

3

3
33
3

3 3

3 3
3

3 3
3

3

3
3
3

3

3

3

3
3

3

3

3

3
33

3 3
3

3 3

3

3

3

3

3

3

3

3
3

3

33

3

3
3

3

33 3

3

3

33

3
3

3
3

33
33

3

33

3
3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4
4

4

4 4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4
44

4

44 4
4

4

4

4
4

4

4

4 44
4

4

4

4

4

4

4

4
4 4

4

4

4 4

4

4

4

44

4

44

4

4

4

4

44

4

4

4 4

4

4

4

4

4
4

4
4

4

4
4

4

4

4

44

4
4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

55

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

55

5

5 5

5

5 5

5
5

5

A

●

20 25 30 35 40 45

−
2

0
2

4

Baseline BMI

B
M

I G
ro

w
th

1

1
1 11

1
11

1
1

1

1

11

1

1 111

1
11

1
1

111

1
1

1

1 2

2

2

2

2

2
2

2

2

2

2

2

2 22

2

2
2

2

22
2

222
2

22
2
222

2

2

2

2
2

2

2

2

2
2

2
2

2

2

22

2

2

2 2
2 22

2

2
22

2
2

2

2
2

2

2

2

222
2

22 2

2

22

2

2

3 3

3

3
3 3

3
3 33

3

33 33

3

3

3
33
3

3 3

3 3
3

3 3
3

3

3
3
3

3

3

3

3
3

3

3

3

3
33

3 3
3

3 3

3

3

3

3

3

3

3

3
3

3

33

3

3
3

3

33 3

3

3

33

3
3

3
3

33
33

3

33

3
3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4
4

4

4 4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4
44

4

44 4
4

4

4

4
4

4

4

4 44
4

4

4

4

4

4

4

4
4 4

4

4

4 4

4

4

4

44

4

44

4

4

4

4

44

4

4

4 4

4

4

4

4

4
4

4
4

4

4
4

4

4

4

44

4
4

4

4

5

5

5

5

5

55

5

5

5

5

5

5

5

55

5

5

5

5
5

5

5

5

5

5

55

5

5
5

5

5

55

5

5 5

5

5

5
5

5

● ● ● ● ●

B

20 25 30 35 40 45

−
2

0
2

4

Baseline BMI

B
M

I G
ro

w
th

1

1
1 11

1
11

1
1

1

1

11

1

1 111

1
11

1
1

111

1
1

1

1 2

2

2

2

2

2
2

2

2

2

2

2

2 22

2

2
2

2

22
2

222
2

22
2
222

2

2

2

2
2

2

2

2

2
2

2
2

2

2

22

2

2

2 2
2 22

2

2
22

2
2

2

2
2

2

2

2

222
2

22 2

2

22

2

2

3 3

3

3
3 3

3
3 33

3

33 33

3

3

3
33
3

3 3

3 3
3

3 3
3

3

3
3
3

3

3

3

3
3

3

3

3

3
33

3 3
3

3 3

3

3

3

3

3

3

3

3
3

3

33

3

3
3

3

33 3

3

3

33

3
3

3
3

33
33

3

33

3
3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4
4

4

4 4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4
44

4

44 4
4

4

4

4
4

4

4

4 44
4

4

4

4

4

4

4

4
4 4

4

4

4 4

4

4

4

44

4

44

4

4

4

4

44

4

4

4 4

4

4

4

4

4
4

4
4

4

4
4

4

4

4

44

4
4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

55

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5
5

5

5

55

5

5 5

5

5 5

5
5

5

● ● ● ● ●

C

1

1
1

1

1

1

1

1
1

11

1

1
1

1

1
1

1

1

1

1
1

1

1

1

111

1

1

1

1

1

1

1

1

20 30 40 50 60

−
2

−
1

0
1

2

Baseline BMI

B
M

I G
ro

w
th

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22
2

2

2
2

2
2

2 2

2

2
2

2
2

2

2
2

2

2

2

2
2

2
2 2

2

2
22

2

2

22

2

2

2

22
2

22

2

2

2 2

2

2

22
2

2

2

2

2
2

2

2
2

2

2
2

2

2 2

2
2

2

2
22 2

2

2

2
2

2

2

222

2

2

2

2

22 2
2

2
2 2 2

2
2

2

2
2

2

22

2

2

2

2

2

2

2
2

2 2

2

2

2

2

22

2

2

22

2

2

2
2

2

2

2

2

2

2

2

2

2
2

2

2

2 2

2
2

22
2

2

2
2

2

2

2

2

2
2 22 2

2
2

2

2
2

2 22

2

2

2
2

22

2

2

2

2

2
2

2

2
2

2

2
2

2

2

2

2
2

2

22
2

2

2

2
2

2

3

3
3

33
3

3
33
3

3

3

33

3
33

3

3

3

3

33

3
3 3

3

3

3
3

3

3
3

3
3

33
3

3 3

3
3

3
3

3

3
33

3
3

3

3
3

33

33
33

3
3 3

3

3

3
33

3
3

333
3 3

3

3

3

3 33
3 3

3
3
3
3

3
3

3

3
3

3
3

3

3

3 3

3

3
3 3

3

D

●
●●

18 / 19



Conclusions

GM and LC are two main approaches to modeling trajectories
in social science aging research

Neither is fundamentally superior to the other, but they rely
on different assumptions about the nature of the population
(parametric with noise vs. smooth or lumpy distributions of
parametric patterns)

Growth modeling requires fewer assumptions but may be less
satisfying than a “crisp” categorization

Changing LC assumptions, though, can lead to radically
different conclusions, so caution is warranted
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