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Introduction

@ Trajectories are patterns of change over time

@ Variety of methods exist for modeling longitudinal data, many
of which are sometimes called “trajectory methods.”

@ But today: focus on methods for repeated measures of same
variable (vs. models for transitions or states)

@ Two general approaches: Growth Modeling methods (GM)
and Latent Class Methods (LC)

e Highlight basic ideas and discuss similarities/differences

@ Dispell some myths about the methods
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Nomenclature

@ GMs and LCs go by a variety of names, some overlapping

o GM: trajectory models, latent trajectory models, latent curve
models, multilevel growth models, random coefficient models,
parametric trajectory models, random effects growth models

o LC: trajectory models, latent trajectory models, group based

trajectory methods, nonparametric trajectory modeling, finite
mixture models

e Different names emerge from different statistical origins (e.g.,
“latent” from SEMs; “multilevel” from HLMs)

@ So...usually can’t tell what someone has done without looking
at methods section.
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Data for Examples

e Data are from the Health and Retirement Study (HRS)

Nationally representative panel study with replenishment of
~35k persons from 1992-

@ BMI data on 1951 birth cohort collected in ‘04, ‘06, ‘08, ‘10.

Restrict to survivors with no missing data (n = 353)

e BMl is kg/mz; normal<25; 25<overweight<30; 30<obese

Some examples treat BMI as continuous; some as
categorical /dichotomous
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BMI

BMI

Intercepts (1) and Slopes (S) for All Individuals
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Black/White Differences in | and S
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@ Basic OLS model with longitudinal data:

Level 1:  y;: = boj + byjtis + boxir + €ir
Level 2:  byj =0 + 71z + u;

bi; = 0o + 1z + v;
e~ N(0,0%)
[u,v] ~ MVN(0, T)

@ Reduced form (insert Level 2 into Level 1):

yit = (o +mzi + ui) + (00 + 61z + Vi) tie + boxie + €ir
= by + b1zj + botjr + b3zt + baxit + (ui + viti + €jt)
@ So, OLS will work but produce bad s.e.’s because of

heteroscedasticity and non-independence of errors
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Basic GC, continued

@ Can be estimated in hierarchical /random effects framework
with data in “long” format (via Stata “mixed” or HLM
software)

In that context, sometimes called a variance components
model because of the Level 1 and (Level 2) random effects
variances

@ ...Or as a multivariate model in an SEM framework, with the
random effects as latent variables (hence “latent” growth)

Data in that framework is in “wide” format

@ Missing data handled implicitly in long format, but must be
handled via FIML or other means in wide format
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GC Example

Unconditional Model (Random) Intercept (Random) Slope

Mean 29.16 .196
Variance 50.5 40
Correlation (1,S) -.21

Conditional Model

Intercept 34.9% 13

Male 71 -.07
Black 2.24% .003
South -1.2 -.13
Education -.46* .01

RE Vars 48.1(R?> = .048)  .397(R? = .013)
Correlation (1,S) -.21
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Latent Class Modeling

@ GM (1) assumes parametric trajectory shape and estimates an
“average” one, (2) estimates (smooth) variance around it, and
(3) estimates covariate effects on trajectory components

@ LC (1) does not (necessarily) assume a parametric form for
trajectories, and (2) does not assume a smooth distribution of
intercepts/slopes, were trajectories parameterized

@ Instead: LC assumes population consists of multiplie discrete,
(relatively) homogenous “classes”

@ Goal is to identify how many distinct classes (using BIC) and
use covariates to predict membership in them
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Basic Idea of LC: Finite Mixture Distribution
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Basic ldea of LC, continued

@ Involves finite mixture modeling and can handle more than 1
measure/repeated measure:

K
.yll' Zf y:r|Ck
k=1

with Zszl ¢k = 1. (proportion of population in each class)

e f(yit|ck) can be specified to be parametric wrt time, or not.
And, the distribution can be anything. e.g.:

p(yit = 1|ck) ~ Bernoulli(pkt)

or
f(}’it|Ck) ~ N(ﬂkn O-it)
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Bernoulli Ex. (obese/not at each t; 2* = 16 “trajectories”)

Classes and Proportions in Each

Class p(obesel) p(02) p(o3) p(o4) % in ck
“Stable nonO” .018 .009 .000 .037 57%
“Variable" 321 .605  .655  .642 13%
“Stable O" .990 986 1.00 .982 30%

Individual Trajectories and Assigned Classes

n Sequence p(i€c1) p(i€c) p(i €c3) Assumed class

190 0000 .992 .008 .000 1
10 0001 727 273 .000 1
4 1000 .824 176 .000 1

105 1111 .000 .036 .964 3
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Bernoulli Example, cont'd

n Sequence p(i€ci) p(i€c) p(i€c3) Assumed class
2 0010 0 1 0 2
7 0011 0 997 .003 2
4 0100 422 578 0 2
3 0101 .016 .984 0 2
5 0110 0 .996 .004 2
9 0111 0 .883 17 2
2 1001 .092 .908 0 2
4 1011 0 .625 375 2
3 1100 .027 973 0 2
1 1101 .001 .999 0 2
4 1110 0 535 465 2
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Normal Example: Suggests flat, linear trajectories

o _|

n

0 | ! !

5 w ; : |
(14.5%) V/q\—/’“

o _| ' ! |

< ! ! ; 1

Z g 3 3 i o

= . o v '

© i ' ! '

[} I '

s (28.3%) q—/k/"—/’é
o _| : ! , ,
® '

(25.6%) v—”"—/’"‘*
wn _|
~N

(22.6%) ¢—__.—/4v’—¢¢
o | (89%)0——44\,_—1
~N

T T T T
2004 2006 2008 2010

Year

16/19



Issues to Consider

@ Issue 1: Once classes are assigned, usually use multinomial
logit to predict membership...

e ...but there is clear uncertainty in class membership

o ...but classes aren't necessarily “latent” (e.g., body weight
subpopulations are determined by sex—there’s nothing latent
there). So, should covariates be considered WHILE estimating
classes?

@ If one assumes parametric shape for trajectories, decision
between latent class and growth model is fundamentally
whether one believes distribution of intercepts and slopes is
smooth or “lumpy” (LCGA vs. GM)

@ Key LC assumption is that there is no heterogeneity within
classes (unrealistic)

@ Assumption can be relaxed, but it becomes dicey. (GMM)
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Growth? Latent Class? How Many Classes?
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Conclusions

@ GM and LC are two main approaches to modeling trajectories
in social science aging research

@ Neither is fundamentally superior to the other, but they rely
on different assumptions about the nature of the population
(parametric with noise vs. smooth or lumpy distributions of
parametric patterns)

@ Growth modeling requires fewer assumptions but may be less
satisfying than a “crisp” categorization

@ Changing LC assumptions, though, can lead to radically
different conclusions, so caution is warranted
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