RCCN Workshop Life Course Perspectives on Aging

Designs for Life Course Studies

Lewina O. Lee, PhD

National Center for Posttraumatic Stress Disorder -- Behavioral Science Division, Boston, Massachusetts, USA Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA

November 4, 2020

Agenda

I. Review: Study designs for life course studies

- II. Boston Early Adversity & Mortality Study (BEAMS)
- III. Challenges and research opportunities in early adversity and lifespan health

Life Course Epidemiological Study Designs

Observational designs

- Prospective cohort studies
- Case-control studies
- Cross-sectional studies

Quasi- or Natural experimental designs

Experimental designs

Observational Designs (I)

Key features:

- Observe & record info on exposure & outcomes
- No manipulation

Benefit vs. Limitation:

+ Minimum ethical issues

- Weaker causal inference

Prospective cohorts

- Strong evidence for temporality of IV-DV relationship
- Key concerns: Sample representativeness; drop-out & loss to follow-up
- Variations
 - Birth (& perinatal) cohorts; high-risk cohorts; twin cohorts

Observational Designs (II)

Key features:

- Observe & record info on exposure & outcomes
- No manipulation

Benefit vs. Limitation:

+ Minimum ethical issues

- Weaker causal inference

Prospective cohorts

- Strong evidence for temporality of IV-DV relationship
- Key concerns: Sample representativeness; drop-out & loss to follow-up
- Variations
 - Birth (& perinatal) cohorts; high-risk cohorts; twin cohorts

Case-control studies

- Participants selected after outcome has been ascertained
- (+) Cost-effectiveness vs. (-) Recall bias & selection bias

Observational Designs (III)

Key features

- Observe & record info on exposure & outcomes
- No manipulation

Benefit vs. Limitation

+ Minimum ethical issues

- Weaker causal inference

Prospective cohorts

- Strong evidence for temporality of IV-DV relationship
- Key concerns: Sample representativeness; drop-out & loss to follow-up
- Variations
 - Birth (& perinatal) cohorts; high-risk cohorts; twin cohorts

Case-control studies

- Participants selected after outcome has been ascertained
- (+) Cost-effectiveness vs. (-) Recall bias & selection bias

Cross-sectional studies

- Informs prevalence & initial clues re: potential associations, but weak design for causality
- Convenience or representative samples

Quasi- / Natural Experimental Designs

Key features

 "Assignment" into exposed vs. unexposed group via an event (e.g., educational reform, Dutch famine)

Benefit vs. Limitation

- + Less subject to selection bias
- Information bias
- Non-random assignment of exposure
 → Confounding

7

Experimental Designs

Key features

- Random assignment ٠
 - Assumption: Groups are interchangeable except for exposure (treatment) status
- Researchers manipulate exposure

Benefit vs. Limitation

- + Gold standard for causal inference Practical and ethical concerns
- + No selection bias

Agenda

I. Review: Study designs for life course studies

II. Boston Early Adversity & Mortality Study (BEAMS)

III. Challenges and research opportunities in early adversity and lifespan health

Adverse Childhood Experiences (ACEs)

Research Article

Relationship of Childhood Abuse and Household Dysfunction to Many of the Leading Causes of Death in Adults

The Adverse Childhood Experiences (ACE) Study

Vincent J. Felitti, MD, FACP, Robert F. Anda, MD, MS, Dale Nordenberg, MD, David F. Williamson, MS, PhD, Alison M. Spitz, MS, MPH, Valerie Edwards, BA, Mary P. Koss, PhD, James S. Marks, MD, MPH

Background: The relationship of health risk behavior and disease in adulthood to the breadth of exposure to childhood emotional, physical, or sexual abuse, and household dysfunction during childhood has not previously been described.

Methods: A questionnaire about adverse childhood experiences was mailed to 13,494 adults who had completed a standardized medical evaluation at a large HMO; 9,508 (70.5%) responded. Seven categories of adverse childhood experiences were studied; psychological, physical, or sexual abuse; violence against mother; or living with household members who were substance abusers, mentally ill or suicidal, or ever imprisoned. The number of categories of these adverse childhood experiences was then compared to measures of adult risk behavior, health status, and disease. Logistic regression was used to adjust for effects of demographic factors on the association between the cumulative number of categories of childhood exposures (range: 0–7) and risk factors for the leading causes of death in adult life.

Results: More than half of respondents reported at least one, and one-fourth reported ≥ 2 categories of childhood exposures. We found a graded relationship between the number of categories of childhood exposure and each of the adult health risk behaviors and diseases that were studied (P < .001). Persons who had experienced four or more categories of childhood exposure, compared to those who had experienced none, had 4 to 12-fold increased health risks for alcoholism, drug abuse, depression, and suicide attempt; a 2- to 4-fold increase in smoking, poor self-rated health, \geq 50 sexual intercourse partners, and sexually transmitted disease; and a 1.4 to 1.6-fold increase in physical inactivity and severe obesity. The number of categories of adverse childhood exposures showed a graded relationship to the presence of adult diseases including ischemic heart disease, cancer, chronic lung disease, skeletal fractures, and liver disease. The seven

Felitti et al. (1988) Am J Prev Med, Merrick et al. (2018), JAMA Pediatr, https://vetoviolence.cdc.gov/apps/phl/resource_center_infographic.html

Prevalence of ACEs by Category for Participants Completing the ACE Module from the 2011-2014 BRFSS

ACEs and Adulthood Health

Pooled ORs (95%CI) for 4+	vs. 0 ACEs		Sample & F/U	ACEs measure	Key Findings
Suicide attempt	30.1 (14.7-61.7)		¹ CDC-Kaiser	#ACEs categories	6+ vs. 0 ACEs: HR=1.7
Problem drug use	10.2 (7.6–13.7)		ACE Study	(0-8); retrospective	deaths ≤ age 75 only
STDs	5.9 (3.2-10.9)	N = 17,337 1995-2006			Very weak assoc. btw fewer ACESs categories &
Problem drinking	5.8 (4.0-8.6)				premature death.
Depression	4.4 (3.5–5.5)		² UK 1958 Birth	# ACEs categories	Men: Threshold effect
Early sexual initiation	4.2 (3.0-5.9)		Cohort Study	(0-6); Qs to teacher	2+ vs. 0 ACEs: HR = 1.6
Teenage pregnancy	3.7 (2.9-4.8)		N = 15,221 1958-2008	& parents asked in childhood	Women: Gradient effect
Respiratory disease	3.1 (2.5-3.8)				2 + vs. 0 ACEs: HR = 1.8
Liver / Digestive dis.	2.8 (2.3-3.4)		3110119	Abuse types $(0, 2)$	Mon: No association
Cancer	2.3 (1.8-3.0)		N = 6,285	retrospective:	
CVD	2.1 (1.7-2.6)	1995-2015		- Emotional	Women: Gradient effect
Diabetes	1.5 (1.2–1.9)			- Moderate physical	3 vs. 0: HR = 1.7 1-2 vs. 0: HR = 1.2
Obesity / Overweight	1.4 (1.1–1.7)		¹ Brown et al. (2000) Am	I Prev Med: ² Kelly-Inving et	(2013) Eur LEnidemiol: ³ Chen
Physical inactivity	1.3 (1.0–1.5)	7	et al. (2016) <i>JAMA Psyc</i>	chiatry	

Hughes et al. (2017) Lancet Public Health

Barriers to Scientific Progress: Early Adversity & Lifespan Health

- Focus on one / single category of stressors
 - ACEs
 - Childhood SES
 - Environmental hazards: built environment, pollution
 - One-time event: famine, extreme cold, economic downturn
- o However, early risk factors tend to co-occur
- o Limited understanding of mechanistic pathways
 - Exposure dimensions \rightarrow Outcome?
 - Intersection with developmental timing
 - Inadequate longitudinal "lifespan" data
- o Measurement issues
 - Retrospective report
 - Focus on severe experiences
 - Assumptions re: operationalization (cumulative score, any vs. none, etc.)

Barriers to Scientific Progress: Early Adversity & Lifespan Health

	Pov	erty	Middle	Income	t test	χ^2 test
Stressor Domain	M (SD)	% Exposed	M (SD)	% Exposed		
Density	.68 (.21)	16	.50 (.13)	7	8.15**	4.60*
Noise	64.98 (6.84)	32	61.30 (7.29)	21	3.97**	4.53*
Housing problems	.74 (.30)	24	.42 (.22)	3	9.96**	25.70**
Family turmoil	2.25 (1.42)	45	1.05 (1.11)	12	7.13**	35.20**
Family separate	2.56 (1.34)	45	1.26 (1.16)	14	7.82**	30.47**
Violence	.22 (.24)	73	.10 (.19)	49	3.67**	16.99**

Note: Percentage exposed = >1 SD above the mean, except for violence wherein any exposure was counted. Mean (SD) = actual expo-

sure levels. Evans & Kim (2010), Ann NY Acad Sci
 Table 2. Multiple risk exposure and parental education
 p < .05; p < .01.Parental educational level Exposure dimensions Measure of proximal environmental experiences No high school High school College Intersection with deve Family intellectual/cultural climate 4.21 4.58 5.42 Inadequate longitudin Family active-recreational climate 5.36 4.90 5.97 Mother rejection 3.46 4.13 2.94 Measurement issues Family social support 14.73 15.26 16.59 Belonging at school 2.19 2.41 2.64 Retrospective report • Negative life events 4.74 3.63 3.27 Focus on severe expe Daily hassles 151.76 139.00 138.67

urn

Assumptions re: operationalization (cumulative score, any vs. none, etc.)

Barriers to Scientific Progress: Early Adversity & Lifespan Health

- Focus on one / single category of stressors
 - ACEs
 - Childhood SES
 - Environmental hazards:
 - One-time event: famine
- $\circ~$ However, early risk factors
- o Limited understanding of m
 - Exposure dimensions →
 - Intersection with develo
 - Inadequate longitudinal
- Rethinking Concepts and Categories for Understanding the Neurodevelopmental Effects of Childhood Adversity

Perspectives on Psychological Science 1–27 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1745691620920725 www.psychologicalscience.org/PPS SAGE

- Measurement issues
 - Retrospective report
 - Focus on severe experiences
 - Assumptions re: operationalization (cumulative score, any vs. none, etc.)

Boston Early Adversity & Mortality Study (BEAMS)

Primary objectives:

- 1. Create a birth-to-death dataset using 3 long-running studies of aging
 - Administrative data linkage to acquire prospective data on:
 - Early-life socioeconomic & environmental conditions via administrative record linkage
 - Later-life health
 - o Extend linkage to siblings
- 2. Examine prospecctive associations from early adversity dimensions to later-life health outcomes, and evaluate long-term explanatory pathways

BEAMS Cohorts (overall N = 3004)

	Normative Aging Study (NAS), N = 2280	Glueck Study N = 456	Grant Study N = 268
Sample	 Community-dwelling men in greater Boston Inclusion: Absence of major diseases Geographic stability 	 Boston public school boys matched controls (on age, ethnicity, IQ, neighborhood criminality) for a prospective study on juvenile delinquency 	 Harvard sophomores recruited for an intensive multidisciplinary study of psychological health Free of emotional, physical, & academic difficulties
Year enrolled	1961-70	1938	1938
Age at enrollment, M (SD)	42 (9)	14 (2)	19 (2)
Birth year, M (SD)	1924 (9)	1929 (2)	1920 (2)
% deceased	74% (Aug 2018)	80% (Aug 2019)	96% (Jan 2019)

I. Pre-linkage	II. "Hand-linkage" to Ancestry & FamilySearch	III. Additional linkages
 Code identifiers & ancillary data for participants (P) & siblings (S): Full name Date of birth Residential history Parental information (name, age, origin) 	 Using data from Step 1, link each P & S to: 1900-1940 US Census State/town birth records State death records, SSDI Military/Veteran records (draft cards, enlistment records, BIRLS) Social Security Application & Claims Index Misc: e.g., obituaries Key information: Family-of-origin & neighborhood SES Family composition Unreported sibs Add'l identifiers to facilitate further linkage (e.g., SSN, mortality info) 	 Early-life lead exposure: Boston Water & Sewer Commission (and similar agencies) – water pipe- based exposure Environmental Protection Agency – airborne exposure Later-life health outcomes Medicare records National Death Index

I. Pre-linkage

II. "Hand-linkage" to Ancestry & FamilySearch

III. Additional linkages

F. FAMI 42.	LY INFO Please Begin w indicat list wi clude t	RMATION fill in f fith pare ing if b fe and c hose who	the follom nts, then rother, s hildren s died in s	wing in list l ister, pecify infancy	nformati prothers half-br ing if c	on about you, and sister other, half- children are	Page 10 ur parent rs in ord -sister, by a pre	of 11 s, broth er of bi step-bro vious mg	Budg ers, sisters rth from old other, or ste rriage or ar	Fo get Bur , wife lest to p-sist re adop	rm Approve eau No 76 and chil youngest er. Next ted. In-	ed -R491 dren. ,	lead exposure: Vater & Sewer sion (and similar) – <i>water pipe-</i>
NAME AND RELATION- SHIP OF FAMILY MEMBER	YEAR OF BIRTH	BIRTH- PLACE CITY & STATE	YEAR OF IMMIGRA- TION TO U.S.A.	<u>IF DI</u> AGE AT DEATH	CAUSE OF DEATH	EDUCATION LAST GRADE COMPLETED	SPECIFY PRESENT MARITAL STATUS	AGE AT FIRST MAR- RIAGE	SPECIFY IF PREVIOUSLY WIDOWED DIVORCED SEPARATED	OCCUP PRESE FORME OR ST	ATION NT OR R OCCUP. UDENT	PRESENT RESIDENCE CITY & STATE	posure ental Protection
(MOTHER) (FATHER) (BROTHER) WIFE	19 19 19 19	EUCRET MASS GREECE BROOKUN MASS WINCHES	-12A 1914 NA TER NA	NA NA NA	NA NA NA	12 8 5TUDENT 12 12+3	EEVE			SECT MAIN (H STI REG	NEW RETARY TENANCE DEPITAL DDENT NSFERCO	JAMA ICA PLAIN, MAS JAMA ICA PLAIN JAMA ICA PLAIN CHESTON HILL	health outcomes
			<u>+</u>	<u></u>	•	neighbo Family Unrepor Add'I ide linkage	compo ted sib entifiers (e.g., S	s sition s to fac SN, m	ilitate furt	her fo)	• Na	ational	e records Death Index

I. Pre-linkage

- Code identifiers & ancillary data for participants (P) & siblings (S):
 - Full name
 - Date of birth
 - Residential history
 - Parental information (name, age, origin)

GSA narrated poster:

Program Area: Behavioral and Social Sciences Category: Poster Session: Social Determinants of Health

(2953) Applying Administrative Linkage to Longitudinal Aging Studies: Boston Early Adversity and Mortality Study

(2953-A) Social Determinants of Health 1: Presenter Discussion Wednesday, November 4, 2020 1:45 PM – 2:15 PM

Preliminary Data - BEAMS Administrative Record Linkage

Findings from Ancestry & FamilySearch linkage completed to date:

	NAS *N = 2280	Glueck *N = 456	Grant *N = 268				
Longitudinal cohort participants							
N (% of cohort)	1260 (55%)	117 (26%)	251 (94%)				
% matched to 1+ Census	93%	88%	94%				
Avg. number of siblings	3.4	3.6	2.2				
Siblings							
Ν	4334	423	561				
% female	51%	45%	48%				
% matched to 1+ Census	84%	87%	92%				
Year of birth, range	1878 - 1964	1903 - 1946	1904 - 1934				

* denotes sample size of the original cohort.

Total number of participants and siblings with completed Ancestry & FamilySearch linkage (Nov 2020): 6946 (56% of all families)

BEAMS Scientific Questions

- Do early adversities in the socioeconomic, environmental, and psychosocial domains have unique & additive effects on later-life health outcomes (all-cause mortality, cardiometabolic disease, ADRD)?
- 2. Do age-specific levels and long-term trajectories of SES attainment and psychosocial resources, and cognitive reserve mediate the associations between dimensions of early adversity and later-life health outcomes?

BEAMS Features Useful for Addressing Life Course Questions

- 1. Augmenting longitudinal cohort studies with administrative data
- 2. Harmonization & integrative data analysis to inform replicability
- 3. Interdisciplinary approach informs integrative science on lifespan health
- 4. Hybrid design to study processes using different time windows

Objectives. Evidence suggests a predictive association between emotion and mortality risk. However, no study has examined dynamic aspects of emotion in relation to mortality. This study used an index of emotional reactivity, defined as changes in positive or negative affect in response to daily stressors, to predict 10-year survival.

Mroczek et al. (2015) J Gerontol B Psychol Sci Soc Sci

Ram & Diehl (2015, chapter) Multiple-timescale design & analysis

Agenda

- I. Review: Study designs for life course studies
- II. Boston Early Adversity & Mortality Study (BEAMS)
- III. Challenges and research opportunities in early adversity and lifespan health

Challenges in Advancing Science on Early Adversity & Lifespan Health

- Parallel to stress-health-aging research
- Difficulties quantifying early adversity ≈ Stress measurement problem

Review article

More than a feeling: A unified view of stress measurement for population science

Elissa S. Epel^{a,*}, Alexandra D. Crosswell^a, Stefanie E. Mayer^a, Aric A. Prather^a, George M. Slavich^b, Eli Puterman^c, Wendy Berry Mendes^{a,*}

^{a)} Department of Psychiatry, University of California San Francisco, 401 Parnasaus Avenue, San Francisco, CA, USA
^b Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
^c School of Kneiology, University of British Columbia, Vancouver, BC, Canada

ARTICLE INFO	A B S T R A C T
Keywords: Acute stress Chronic stress Daily stress Emotions Affect Appraisals Motivational states Emotional contagion Measurement Allostatic load	Stress can influence health throughout the lifespan, yet there is little agreement about what types and aspects of stress matter most for human health and disease. This is in part because "stress" is not a monolithic concept but rather, an emergent process that involves interactions between individual and environmental factors, historical and current events, allostatic states, and psychological and physiological reactivity. Many of these processes alone have been labeled as "stress." Stress science would be further advanced if researchers adopted a common conceptual model that incorporates epidemiological, affective, and psychophysiological perspectives, with more precise language for describing stress measures. We articulate an integrative working model, highlighting how stressor exposures across the life course influence habitual responding and stress reactivity, and how health behaviors interact with stress. We offer a Stress Typology articulating timescales for stress measurement – acute, event-based, daily, and chronic – and more precise language for dimensions of stress measurement.

Also see: https://www.stressmeasurement.org/

Key issues:

- No common language of early adversity
- Conflation of heterogeneous constructs, e.g., exposure vs. response ("threat exposure" & "threat appraisal")
- Lack of complex and precise models to capture the phenomenon of early adversity & its health impact

Framework for Studying Early Adversity & Lifespan Health (I)

Framework for Studying Early Adversity & Lifespan Health (II)

Exposure

- Systematic quantification of early adversity exposures
 - Domains, e.g.:
 - \circ SES
 - $_{\circ}$ Environmental
 - Psychological (e.g., social isolation, evaluative)
 - Characteristics, e.g.:
 - Duration & timescale (daily? chronic?)
 - Freq, intensity
 - $_{\circ}$ Threat vs. deprivation
- Characterize exposure cooccurrence

Response

- Within-person response across levels:
 - Psych (cog, affective)
 - o Neural
 - Physiological
 - Genetic & cellular
 - o Behavioral
 - o Cross-level interactions
 - / feedback loops
- Response patterns, e.g.:
 - Anticipation
 - Reactivity
 - \circ Recovery
 - Habituation
- o Timescale

Health outcomes

- $_{\circ}$ Multiple domains
- o Shorter-term, e.g.:
 - Physiologic
 - dysregulation (obesity,
 - insulin resistance, etc.)
 - Past-month depression
- o "Hard" outcomes, e.g.:
 - Diseases
 - Disability
 - Premature death
- Positive outcomes, e.g.,:
 - o "Healthspan"
 - o Cardiovascular health
 - Positive psychological
 - well-being

Framework for Studying Early Adversity & Lifespan Health (III)

- Bidirectional influences among exposure, response, and health outcomes
- o Contextual factors: Sex, Cohort, geography, race/ethnicity
- Protective factors (e.g., cognitive enrichment) & effect modifiers
- Model of risk transmission over developmental span
- Analytic challenges: causality, multiple time scales, small effects from chain-of-risk w multiple mediators (*)
- Cross-study harmonization & replication

Acknowledgements

HEALTH

CARE in the 21st Century

Funding:

UNIVERSITY

K08-AG048221, RF1-AG064006, R01-AG018436, R01-AG032037, R01-AG053273, UL1-TR001430, R01-MH042248

Correspondence: lewina@bu.edu

- Dan Mroczek (MPI) ٠
- Joseph Ferrie •
- Fileen Krantz-Graham
- **Emily Willroth** ٠
- Jing Luo •
- Oliva Atherton ٠

- @Boston U & VA Boston:
- Lewina Lee (MPI) •
- Ron Spiro •

@Mass General Hospital:

- **Robert Waldinger** •
- Michael Nevarez •

BEAMS Linkage Team

Ashley Dorame

Arnold Castro

Maria Lopes

Mina Antic

Delilah Harounian

