Peer coaching via mHealth to improve physical activity in older Latinx adults with Parkinson disease

Cristina Colón-Semenza, PT, MPT, PhD
Assistant Professor, Doctor of Physical Therapy Program
Kinesiology Department
College of Agriculture, Health & Natural Resources
Institute for Collaboration on Health, Intervention & Policy (InCHIP)
Introduction
Parkinson’s legacy to the field of neurology (A) The frontispiece to his essay on the Shaking Palsy, written in 1817. (B) An individual with Parkinson’s disease from William Gower’s work Manual of the Diseases of the Nervous System written in
Search query: exercise and parkinson’s disease

Count

![Graph showing the increase in search count over time.](image-url)
Exercise-Induced Neuroprotection and Recovery of Motor Function in Animal Models of Parkinson’s Disease

Ewelina Palasz, Wiktor Niewiadomski, Anna Gasiorowska, Adrianna Wysocka, Anna Stepniwska, and Grazyna Niewiadomska

Review

The Universal Prescription for Parkinson’s Disease: Exercise

Jay L. Alberts and Anson B. Rosenfeld

Cleveland Clinic, Department of Biomedical Engineering, Cleveland, OH, USA
Cleveland Clinic, Center for Neurological Restoration, Cleveland, OH, USA

Exercise-enhanced Neuroplasticity Targeting Motor and Cognitive Circuity in Parkinson’s Disease

Department of Neurology, University of Southern California, Los Angeles, CA, 91007
Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 91007
Department of Psychiatry and Biobehavioral Science, University of California, Los Angeles, CA, 90024
Department of Neurobiology, University of Chicago, Chicago, IL, 60637
Andrus Gerontology, University of Southern California, Los Angeles, CA, 91007

The Benefits of Exercise in Parkinson Disease

Liana S. Rosenthal, MD and E. Ray Dorsey, MD, MBA
Parkinson Disease and Movement Disorder Center, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Background

Research Report

Levels and Patterns of Physical Activity and Sedentary Behavior in Elderly People With Mild to Moderate Parkinson Disease

Martin Benka Wallén, Erika Franzén, Håkan Nero, Maria Hägglund

Conclusions. Physical activity levels were generally low, in terms of both total volume and intensity, with only minor variations over the course of a day or between days. These results emphasize the need to develop strategies to increase PA and reduce time spent in sedentary behaviors in elderly people with mild to moderate PD.
Theories of Motivated Behavior

Social Cognitive Theory

Deci & Ryan, 2000

Adapted from Bandura, 2004
Self-Determination Theory

- **Autonomy**: The feeling one has choice and willingly endorsing one's behavior.
- **Competence**: The experience of mastery and being effective in one's activity.
- **Relatedness**: The need to feel connected and belongingness with others.

Motivation
Current State of the Evidence
Factors Associated With Exercise Behavior in People With Parkinson Disease

Terry Ellis, James T. Cavanaugh, Gammon M. Earhart, Matthew P. Ford, K. Bo Foreman, Lisa Freedman, Jennifer K. Boudreau, Leland E. Dibble

Conclusions: Self-efficacy, rather than disability, appears to be strongly associated with whether physically, community-dwelling people with PD exercise regularly. The results of this study suggest that physical therapists should include strategies to increase exercise self-efficacy when designing patient intervention programs for patients with PD.
Comparative Effectiveness of mHealth-Supported Exercise Compared With Exercise Alone for People With Parkinson Disease: Randomized Controlled Pilot Study
Terry D. Ellis, James T. Cavanaugh, Tamara DeAngelis, Kathryn Hendron, Cathi A. Thomas, Marie Saint-Hilaire, Karol Pencina, Nancy K. Latham

Figure 1.
Wellpepper exercise application. Courtesy of Wellpepper Inc.

Ellis et al., 2018
Original Paper

Peer Coaching Through mHealth Targeting Physical Activity in People With Parkinson Disease: Feasibility Study

Cristina Colón-Semenza¹, PT, MPT; Nancy K Latham², PT, PhD; Lisa M Quintiliani³, PhD; Terry D Ellis¹, PT, PhD

¹Center for Neurorehabilitation, Department of Physical Therapy & Athletic Training, College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
²Boston Claude D Pepper Older Americans Independence Center, Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
³School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston University, Boston, MA, United States
33% increase in steps/day
5,354 steps/day
7,115 steps/day

42% increase in active minutes
199 minutes/week
282 minutes/week
Incidence of Parkinson's Disease: Variation by Age, Gender, and Race/Ethnicity

Stephen K. Van Den Eeden1, Caroline M. Tanner2, Allan L. Bernstein3, Robin D. Fross4, Amethyst Leimpe1, Daniel A. Bloch5, and Lorene M. Nelson6

1 Division of Research, Kaiser Permanente, Oakland, CA.
2 The Parkinson's Institute, Sunnyvale, CA.
3 Kaiser Santa Rosa Medical Center, Santa Rosa, CA.
4 Kaiser Hayward Medical Center, Hayward, CA.
5 Stanford University, Stanford, CA.

7.6, 12.2). The age- and gender-adjusted rate per 100,000 was highest among Hispanics (16.6, 95% CI: 12.0, 21.3), followed by non-Hispanic Whites (13.6, 95% CI: 11.5, 15.7), Asians (11.3, 95% CI: 7.2, 15.3), and Blacks (10.2, 95% CI: 6.4, 14.0). These data suggest that the incidence of Parkinson's disease varies by race/ethnicity.
Racial and Social Disparities in Health and Health Care Delivery among Patients with Parkinson’s Disease and Related Disorders in a Multiracial Clinical Setting

Lynda Nwabuobi1,2 \cdot Julia Agee1,3 \cdot Rebecca Gilbert4,5,6

Hispanic Perspectives on Parkinson’s Disease Care and Research Participation

Lisa Damrona, Irene Litvana,*, Ece Bayrama, Sarah Berkb, Bernadette Siddiqib and Holly Shillc

aUniversity of California San Diego, Department of Neurosciences, La Jolla, CA, USA
bThe Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
cBarrow Neurological Institute, Phoenix, AZ, USA

Accepted: 19 March 2021
Pre-press: 3 April 2021
How are the exercise needs of People with PD who are Hispanic/Latinx unique?

Exercise knowledge & utilization

“I just kind of make exercising in the morning my job, instead of having to go to work I exercise in some way, shape, or form, whether it's going to the gym, or playing pickleball, or even doing a kickboxing class online at home in the morning.”

Family support for exercise

“...It is very sad when one's own family does not understand what one needs. You need support, you need help and I think we all have that problem with Parkinson's that our own relatives, the family does not, they do not believe that you are truly encountering something with your health, and they think you're doing these things to get attention”

“...my grandsons call me to make sure I’m not doing any yard work...that I’m not doing anything heavy”

“...(my kids) try to motivate me a lot. I don’t like to go out. I don’t want to slow them down.”
Major Gaps/Opportunities for Research
Virtual Peer Coaching in Hispanics with PD: Conceptual Model

Intervention
- Action Plan
 - Self-driven PA goals
- Educational videos
 - Activity tracker /feedback on goals
- 1:1 peer support meetings
- 1:1 peer support app
- Group peer support
- Family integration/support

Mediators of Motivation for Physical Activity (Outcome measure)
- Autonomy
 - (BREQ-2: intrinsic regulation)
- Competence
 - (Self-Efficacy for PA)
- Relatedness
 - (social support via PDQ39; Supportive Accountability Measure: Exercise Habits; Social Norms for Inactivity)

Primary Outcome
- Physical Activity
 - (Actigraph)
 - Steps/day
 - Steps/week
 - MVPA/day
 - MVPA/week

Secondary Outcomes
- Disease progression (UPDRS III)
- Functional mobility (TUG)
- Quality of Life (PDQ39)
ACKNOWLEDGEMENTS

UConn Pepper Center
Terry Ellis, PT, PhD
Nancy Latham, PT, PhD
Dan Fulford, PhD
Amy Gorin, PhD
Rick Fortinsky, PhD
Bernardo Rodrigues, MD, PhD
Kim Gans, PhD
Erika Lopez, SPT
Dhimitri Stojko, SPT
Yoselin Corella-Navarro, DPT

Participants & family members