Physical Resilience after Orthopedic Surgery in Older Adults

Cathleen Colón-Emeric, MD, MHS
Disclosures and Funding

- **NIA UH2 AG056925-01** (Colon-Emeric and Whitson, MPI)
- Consultant for Amgen (CEC Chair), Novartis (DMC Chair) Musculoskeletal Programs including myostatin inhibitor
- U.S. patent 20104717 “Bisphosphonate compositions and methods for treating heart failure”, and 61560328 “Bisphosphonate compositions and methods for treating and/or reducing cardiac dysfunction”
- Equity owner of BisCardia, Inc.
Objectives

1. Describe **resilient phenotypes** following hip fracture using 2 different approaches
2. Identify **biomarkers** that predict resilient phenotypes
 - Hypotheses for underlying pathways
Recovery Phenotype Approach

• Descriptive
• Multiple parameters
• Can summarize multiple outcomes simultaneously
 - Latent Class Trajectory Analysis
 - Factor Analysis
 - Principle Components Analysis
• Driven by age, pre-stressor status
Expected Recovery Differential Approach

- Quantifies how much outcome differed from expected
- Requires predictive model from large cohort
- Accounts for baseline status, stressor factors, environment etc.
Applying Phenotype Approaches after Hip Fracture

- 3 Cohorts of the Baltimore Hip Studies
 - N=541
- Latent Class Profile analysis
 - Complete Case Analysis
 - Multiple Imputation
 - Death as covariate

Jay Magaziner, PhD
University of Maryland
Latent Profile Analysis trajectory group

- Lowest resilience
- - - Medium resilience
- - - - - Highest resilience
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Lowest N=136</th>
<th>Intermediate N=242</th>
<th>Highest N=163</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (yrs)</td>
<td>83.1</td>
<td>81.1</td>
<td>78.2</td>
</tr>
<tr>
<td>Male (%)</td>
<td>33.1</td>
<td>14.5</td>
<td>13.5</td>
</tr>
<tr>
<td># Comorbidities</td>
<td>1.6</td>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>≤ High School (%)</td>
<td>65.4</td>
<td>62.3</td>
<td>50.5</td>
</tr>
<tr>
<td>Depressed (%)</td>
<td>49.3</td>
<td>37.6</td>
<td>35.0</td>
</tr>
<tr>
<td>Cognitive Impairment (%)</td>
<td>25.0</td>
<td>5.0</td>
<td>0</td>
</tr>
<tr>
<td>Any alcohol use (%)</td>
<td>47.4</td>
<td>48.8</td>
<td>61.1</td>
</tr>
<tr>
<td>Prior weight loss (%)</td>
<td>19.9</td>
<td>12.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Trochanteric fracture (%)</td>
<td>52.9</td>
<td>40.9</td>
<td>33.7</td>
</tr>
<tr>
<td>General Anesthesia (%)</td>
<td>86.8</td>
<td>35.3</td>
<td>22.6</td>
</tr>
<tr>
<td>Hospital Infection (%)</td>
<td>16.9</td>
<td>6.6</td>
<td>7.4</td>
</tr>
</tbody>
</table>
Factors Associated with Resilience

Model Predicting High vs. Low/Medium Resilience

AUC for Variable Chunk

- Stressor Factors
- Environment
- Comorbidities
- Demographics
- Psychosocial
- Pre-stressor function

AUC values:
- Stressor Factors: 0.6
- Environment: 0.6
- Comorbidities: 0.61
- Demographics: 0.67
- Psychosocial: 0.67
- Pre-stressor function: 0.84
Expected Recovery Differential (ERD) After Hip Fracture

- Mixed Model with random effects predicting outcome for each individual
 - 10 outcomes
- Difference from actual outcome = ERD
- Average across all outcomes for Total ERD
Expected Recovery Differentials Correlated Across Most Outcomes
Pathway Analysis of Biomarkers Significantly Associated with ERD

Adjusted Canonical Correlation 0.58

- Cytokine-cytokine receptor interaction
- TNF Signaling

Pathways regulating pluripotency of stem cells

- P35 signaling pathway
- Jak-STAT signaling pathway

Transcriptional misregulation in cancer

- FoxO pathway
- PI3K-Akt pathway
- mTOR pathway
- Adipocytokine pathway
- Insulin signaling pathway
- Non-alcoholic fatty liver disease
Hypotheses Generated

Are biomarkers associated with physical resilience?

High Resilience
- ↓ Cellular Senescence
- ↓ Inflammation
- ↑ Mitochondrial Function
- ↑ Skeletal Muscle Metabolism

Low Resilience
- ↑ Cellular Senescence
- ↑ Inflammation
- ↓ Mitochondrial Function
- ↓ Skeletal Muscle Metabolism

miRNAs, free amino acids, acylcarnitines, IL-6, TNFR-I, TNFR-II, sVCAM-1, IGF-1
Thank you and Questions

Duke Collaborators:
Heather Whitson, Ken Schmader, Kim Huffman, Bill Kraus, Virginia Kraus, James Bain, Micah McClain, Miles Berger, Marty Woldorff, Daniel Parker, Janet Bettger, Harvey Cohen, Miriam Morey, Carl Pieper, Rick Sloane, Mary Cooter

U. Maryland Collaborators:
Jay Magaziner, Denise Orwig, Ann Gruber-Baldini

U. Connecticut Collaborators:
George Kuchel, Jacques Banchereau, Janet McElhaney

Harvard Collaborators:
Lew Lipsitz, Junhong Zhou

NIA Collaborators:
Giovanna Zappala, Basil Eldadah, Chhanda Dutta