Early Life Experiences
Environmental Influences During Infancy & Childhood

Poverty

Childhood Abuse & Neglect

Social & Physical Environment
Epigenetic Control of Gene Activity
Prenatal Origins of Health & Disease

stress, immune toxins, drugs mood, diet

offspring development
Prenatal Maternal Influences: Translational Approaches

Perceived psychosocial stress during pregnancy

- placenta DNA methylation
- fetal neurobehavior
- infant development

0.47***
maternal psychosocial stress during pregnancy
placental DNA methylation of Hsd11b2

0.32*
environmental exposure
epigentic effect

-0.51***
fetal neurodevelopment
offspring outcome

Epigenetic age during pregnancy

[Graph showing a scatter plot with epigenetic age on the x-axis and chronological age on the y-axis. The data points are scattered around a line indicating a correlation. A highlighted area on the graph comments on "epigenetic age acceleration".]
Prenatal and early life influences on epigenetic age in children: a study of mother–offspring pairs from two cohort studies

Andrew J. Simpkin1,*, Gibran Hemani1, Matthew Suderman1, Tom R. Gaunt1, Oliver Lyttleton2, Wendy L. Mcardle2, Susan M. Ring1,2, Gemma C. Sharp1, Kate Tilling1, Steve Horvath3,4, Sonja Kunze5, Annette Peters5,6, Melanie Waldenberger5, Cavin Ward-Caviness6, Ellen A. Nohr7, Thorkild I. A. Sørensen1,8,9, Caroline L. Relton1,10,† and George Davey Smith1,†

1MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK, 2School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK, 3Human Genetics, David Geffen School of Medicine, Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA, 4Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 5Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, 6Research Unit for Gynaecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark, 7The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 8Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark and 9Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
<table>
<thead>
<tr>
<th>Clinical variables</th>
<th>Clinic for AA</th>
<th>Correlation (or F-statistic)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M = 0, F = 1)</td>
<td>Birth</td>
<td>-0.019</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>-0.055</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>-0.082</td>
<td>0.010</td>
</tr>
<tr>
<td>Parity</td>
<td>Birth</td>
<td>-0.018</td>
<td>0.596</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>0.017</td>
<td>0.600</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>-0.071</td>
<td>0.030</td>
</tr>
<tr>
<td>Caesarean (N = 0, Y = 1)</td>
<td>Birth</td>
<td>0.067</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>0.006</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>0.019</td>
<td>0.555</td>
</tr>
<tr>
<td>Birth weight (kg)</td>
<td>Birth</td>
<td>0.011</td>
<td>0.734</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>0.079</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>-0.068</td>
<td>0.035</td>
</tr>
<tr>
<td>Birth weight (category)</td>
<td>Birth</td>
<td>0.01</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>2.40</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>3.73</td>
<td>0.024</td>
</tr>
<tr>
<td>Gestational age at delivery (week)</td>
<td>Birth</td>
<td>0.003</td>
<td>0.922</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>0.029</td>
<td>0.363</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>-0.048</td>
<td>0.134</td>
</tr>
<tr>
<td>Breast feeding (N = 0, Y = 1)</td>
<td>Birth</td>
<td>0.035</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>-0.010</td>
<td>0.756</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>0.026</td>
<td>0.434</td>
</tr>
<tr>
<td>Maternal alcohol (N = 0, Y = 1)</td>
<td>Birth</td>
<td>0.034</td>
<td>0.307</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>-0.011</td>
<td>0.732</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>-0.015</td>
<td>0.647</td>
</tr>
<tr>
<td>Maternal smoking (N = 0, Y = 1)</td>
<td>Birth</td>
<td>0.097</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Childhood</td>
<td>0.021</td>
<td>0.518</td>
</tr>
<tr>
<td></td>
<td>Adolescence</td>
<td>-0.016</td>
<td>0.616</td>
</tr>
</tbody>
</table>

Epi-AA in adolescent males
Epi-AA at birth in cesarean
Epi-AA at birth with maternal smoking
Walsh et al. (2019) *PNAS*
Preterm Birth and Maternal Stress

Walsh et al. (2019) *PNAS*
Elevated 2nd Trimester PSS Score
“masculinizes” aromatase profile in females
Fetal Exposure to Testosterone

Percent of Infants with Testosterone Levels Exceeding the Median Value

- Low/High: 37.6%
- Low/Low: 46.8%
- High/High: 54.9%
- High/Low: 61.5%

Level of Maternal Testosterone/Level of Placental Aromatase

ASD RISK

Firestein et al. in preparation
Impact of prenatal exposures on the maternal brain
Conceptual model depicting hypothesized meditational pathways and moderators linking childhood maltreatment to risk for MCI and AD

APOE ε4

Documented Childhood Maltreatment (ages 0-11)

Physical Health Psychosocial Risk Factors
- Socio-economic Status
- Education
- Depression
- Social Support
- Attitudes Toward Aging

Biological Markers of Aging

Increased Risk for Mild Cognitive Impairment and Alzheimer’s Disease

Note: Mediation – solid lines; Moderation – dotted lines.
Thanks

Columbia University
Rahia Mashhoodh
Cate Jensen
Emily Jordan
Marija Kundakovic
Kathryn Gudsnuk
Becca Franks
Morgan Firestein

Columbia Center for Children’s Environmental Health
Rachel Miller
Frederica P. Perera

Columbia University
Catherine Monk
Ben Tycko